

Introduction to Research Data Management

... and how not to get overwhelmed by data

Workshop lecturer: Jan Vališ

Authors of the presentation: Adéla Jílková, Martin Schätz, Jan Vališ

22. 10. 2025

Content of this presentation is licensed via <u>CC BY 4.0</u> except where otherwise noted for content created by third-parties.

Question 1: What is your academic affiliation?

- A. Czech Technical University in Prague (CTU/ČVUT)
- B. University of Chemistry and Technology, Prague (UCT/VŠCHT)
- C. Charles University (CUNI/UK)
- D. Czech University of Life Sciences Prague (CZU/ČZU)
- E. Palacký University (UPOL)
- F. Other: please tell us in the chat.

Question 2: What is your main research field?

- A. DiS
- B. Bachelor
- C. Master's
- D. Doctoral Candidate
- E. Postdoc
- F. Other: please tell us in the chat.

Question 3: What is your main research field?

- A. Natural, medical, and health sciences
- B. Engineering and technology
- C. Social sciences, business, and law
- D. Arts and humanities
- E. Other: please tell us in the chat.

What is research data and why manage it?

Research data – theoretically

- Any information collected, observed, generated, or created during the research process to produce and support research findings
- Primary data
 - Directly from a given research
 - Quantitative (volume) vs. Qualitative (interview)
 - Experimental (pH) vs. Observational (bird migration)
- Secondary data
 - From other research used for different reason

Research data – practically

- Pictures (SEM pictures, photos of birds etc.)
- Videos (movement of particles, interviews etc.)
- Sound records (birds singing, interviews etc.)
- Tables (spectra, observations etc.)
- Texts
- Statistics
- Electronic patient records

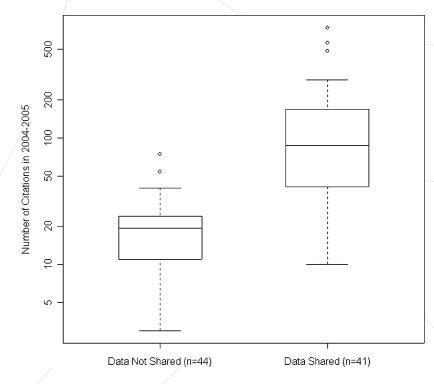
• ..

Research data are not:

- Project proposal
- Project budget
- Evaluation report
- Conference proceedings
- Journal article

Research data management

- A set of practices, strategies, and activities, including data:
 - organization,
 - documentation,
 - storage, and
 - sharing
- Covers all stages of the research process
- Ensures the effectiveness, reproducibility, and reuse of research data


Why manage research data?

It may be mandatory (institutional, publisher, or research funder requirements)
Keep the research process secure and organized

- Increase efficiency, save time and resources
- Share data with colleagues
- Reduce risk of data loss and improve data security

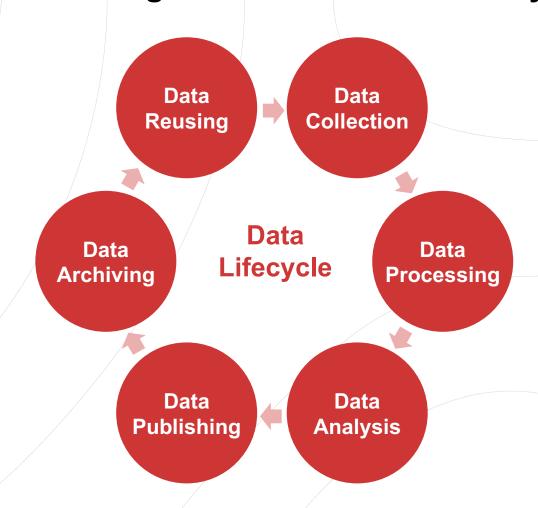
Enhance global data sharing

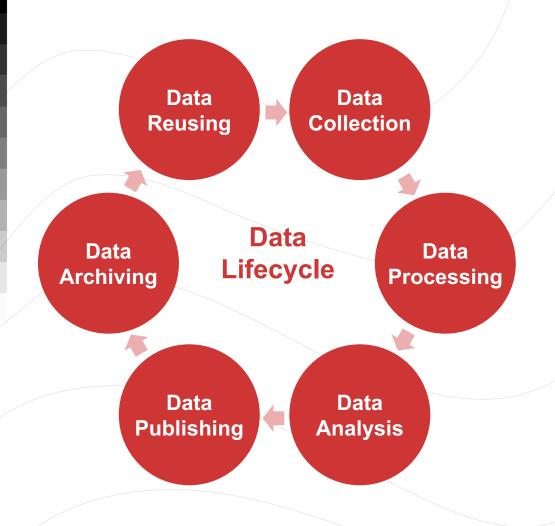
- Enable data reuse and enhance collaboration
- Increase the visibility and impact of research
- Increase transparency & improve trust in findings
- Support research integrity & validation of results

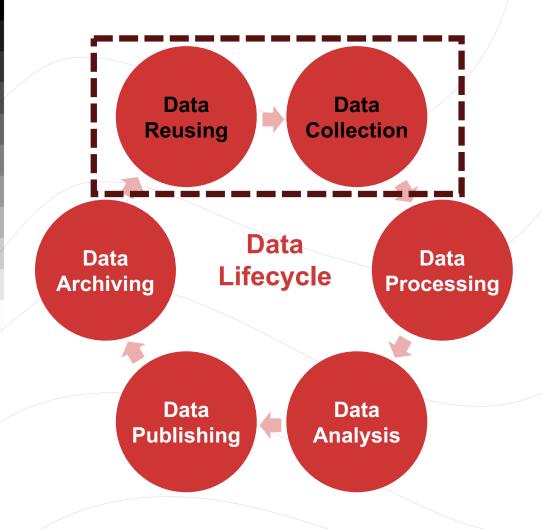
2004–2005 citation counts of 85 trials by data availability. Heather A. et al. 2007. PLOS ONE. License: CC BY 4.0 10.1371/journal.pone.0000308.

Research data

Different fields and disciplines

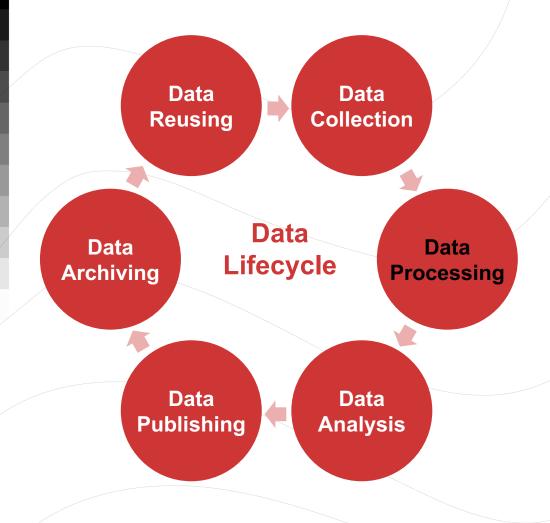

- Natural and life sciences
- Medical and health sciences
- Engineering and technology
- Social sciences
- Arts and humanities


Research data


Different fields and disciplines

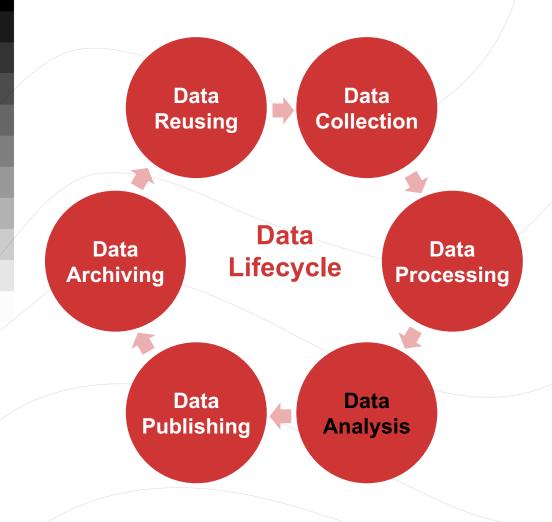
- Natural and life sciences
- Medical and health sciences
- Engineering and technology
- Social sciences
- Arts and humanities

Different stages of research data lifecycle



Source Data

Collected/produced "raw data"
Reused data from a database/repository



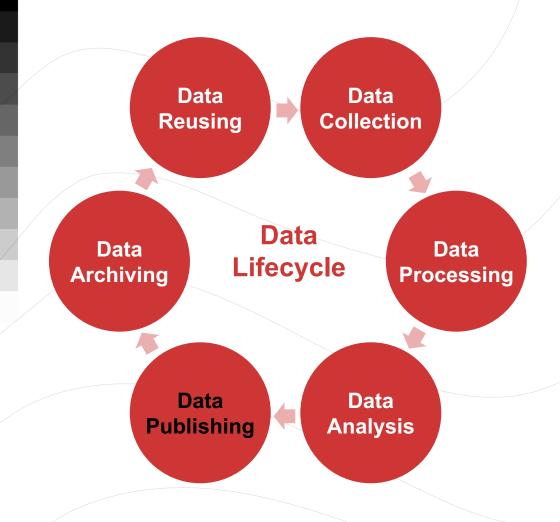
Source Data

Collected/produced "raw data"
Reused data from a database/repository

Data Processing

Transformation of raw data

Source Data


Collected/produced "raw data"
Reused data from a database/repository

Data Processing

Transformation of raw data

Data Analysis

Data interpretation Generation of results and outputs

Source Data

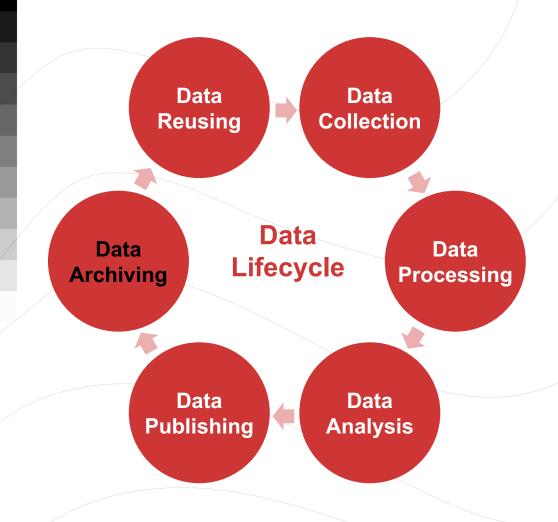
Collected/produced "raw data"
Reused data from a database/repository

Data Processing

Transformation of raw data

Data Analysis

Data interpretation Generation of results and outputs


Data Publishing

Journal article

Manuscript + supplementary information

Databases/repositories

Data underlying publication Separate datasets

Source Data

Collected/produced "raw data"
Reused data from a database/repository

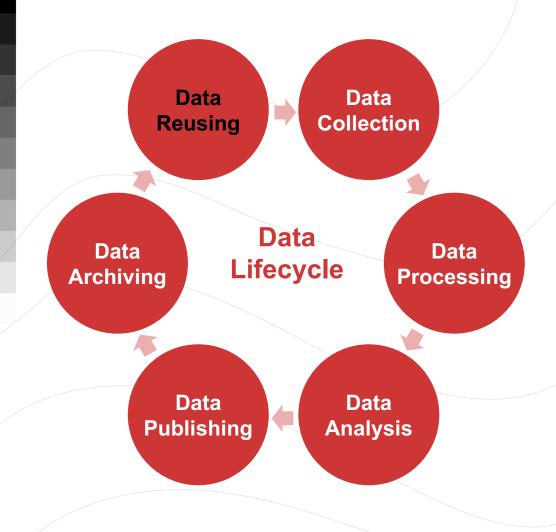
Data Processing

Transformation of raw data

Data Analysis

Data interpretation
Generation of results and outputs

Data Publishing


Journal article

Manuscript + supplementary information

Databases/repositories

Data underlying publication Separate datasets

Data Archiving

Source Data

Collected/produced "raw data"
Reused data from a database/repository

Data Processing

Transformation of raw data

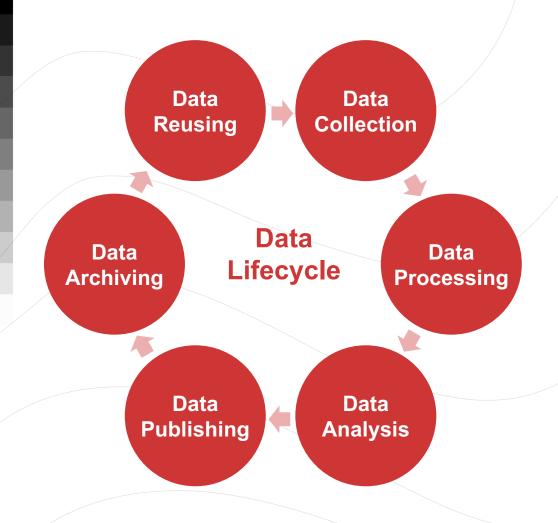
Data Analysis

Data interpretation Generation of results and outputs

Data Publishing

Journal article

Manuscript + supplementary information


Databases/repositories

Data underlying publication Separate datasets

Data Archiving

Data Reusing (registries, repositories)

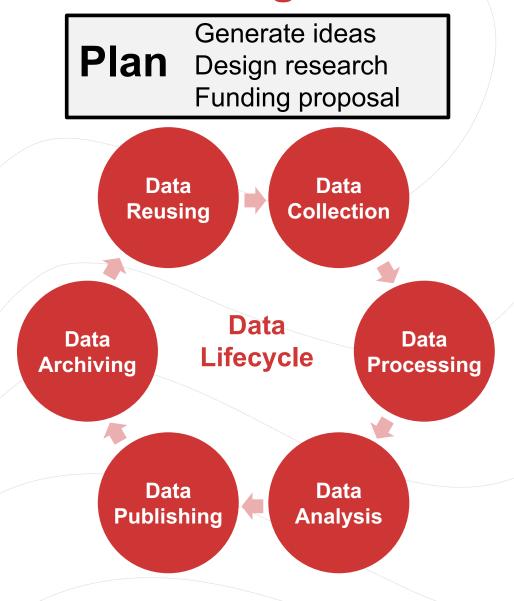
RDM strategies

Organizing

Directory structure Formats, names, versions

Documentation

Data description
Experimental details
Decisions made
Metadata


Storage

Backup Long-term preservation

Data access

Access rights (open, restricted)
Licenses

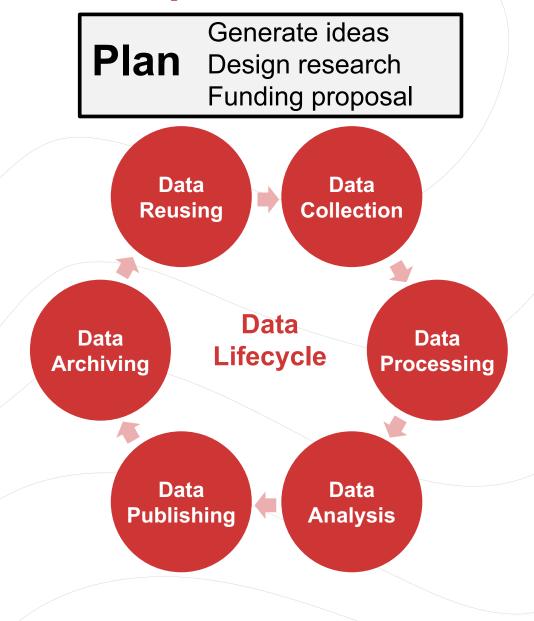
RDM strategies

Organizing

Directory structure Formats, names, versions

Documentation

Data description
Experimental details
Decisions made
Metadata


Storage

Backup Long-term preservation

Data access

Access rights (open, restricted) Licenses

Examples of research data requirements and policies

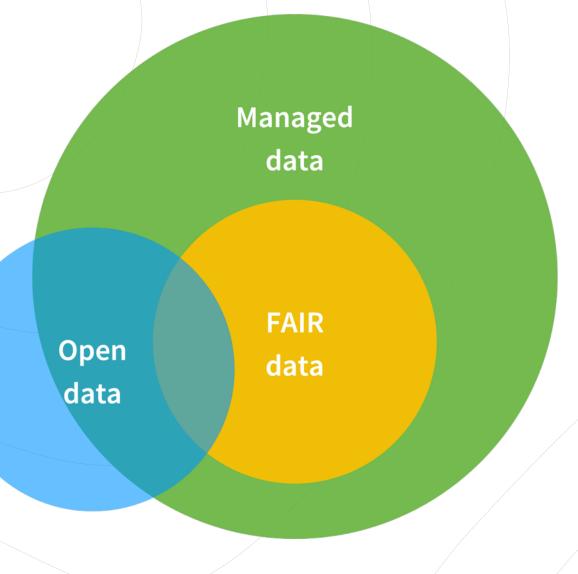
Funding agency policies

Open Access policy
Data management plan

Legal and ethical requirements

National and European legislation Ethical framework for researchers Personal data protection Intellectual property rights Commercial use of data

Institutional policies


RDM policy
Codes of conduct and ethics
Data protection
Partnership agreement (for collaboration)

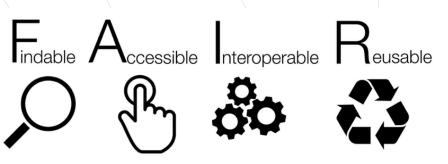
Journal & Publisher policies

Data sharing policy

Open vs. FAIR data 22/56

Open vs. FAIR Data

Source: Valis, Jan (2024). FAIR vs. Open Data (Venn diagram). doi.org/10.6084/m9.figshare.25648548.v1; License: CC BY


FAIR principles

Findable

- Metadata
- Persistent Identifiers (DOI, ORCiD, ROR, IGSN...)
- Registration and indexing in searchable repository

Accessible

- Free and open metadata
- Metadata available even when data are not available

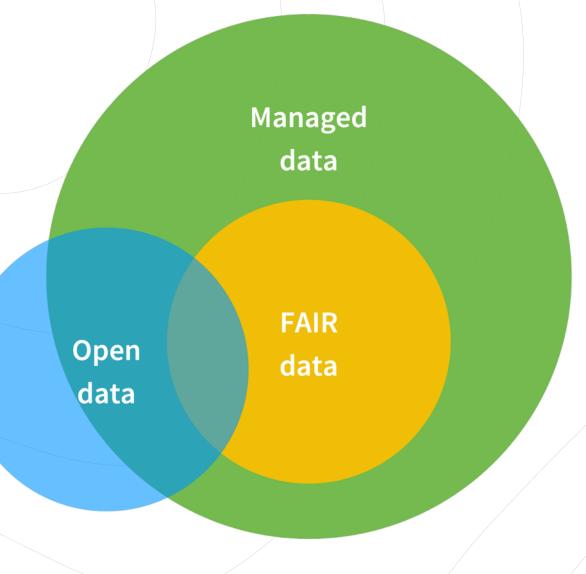
Source: SangyaPundir, FAIR data principles, CC BY-SA 4.0

Interoperable

- Widely used language
- Preferred formats
- Vocabularies and ontologies

Reusable

- Rich description (Read Me File)
- License
- Field/Community standards


What (not) to publish?

- Personal data
- Sensitive data
- Protected by legitimate interest:
 - Intellectual Property
 - Commercial interests

What to do with these data?

- Can the data be
 - anonymized?
 - shared with informed consent?
 - shared later (embargo)?
 - shared only with selected researchers (controlled access)?
- If not, we can still usually share at least metadata.

Open vs. FAIR Data

Source: Valis, Jan (2024). FAIR vs. Open Data (Venn diagram). doi.org/10.6084/m9.figshare.25648548.v1; License: CC BY



Metadata – theoretically

- Documentation describing data = "data about data"
- Machine readability → search & retrieval of data from repository.
- Metadata: who, what, when, where, why, how
- Different types
 - descriptive (title, author, date, keywords ...)
 - administrative (file formats, owner, license ...)
 - field-specific (spectral resolution, CAS number of molecule, species ...)

Metadata – practically

Metadata Models

- Universal
 - Dublin Core
 - DataCite
 - •
- Field-specific
 - Open Geospatial Metadata Standard
 - Chemical Research Object Framework

DataCite

- Mandatory
 ID, Creator, Title, Publisher, Year, Type
- Recommended: Subject, Contributor, Date, Related ID, Description, Geo Location
- Elective: Language, Alternative ID, Size, Format, Version, Rights, Funding, Related Item

Questions 4 & 5

- 4) Select examples of research data:
- Infrared spectrum of a sample.
- Grant budget submitted to grant provider.
- ☐ Recording of a structured interview.

- 5) Select truthful statements regarding metadata:
- Metadata help in finding research data.
- ☐ Metadata should be machine-readable.
- Must be human readable.

Data Management Plan (DMP)

DMP – plan before project starts

Administrative

- People involved (qualifications, training, roles & access, ORCiD)
- Requirements (institutional, funder ...) & Support
- Budget

Instruments

- Access?
- Documentation?

Software

- Capture/processing/analysis workflows?
- Access to proper software?
- Use of open file formats?

DMP – plan before project starts

Size

- Enough storage for (captured/processed/analyzed) data?
- Many small files or fewer large files?

Backup

- How and where? (HDD, NAS, on/off-campus server)
- Encryption and access control?

Archiving

- What to archive?
- For how long?

DMP – plan before project starts

Legal & Ethical aspects

- Collaboration and services
- Personal/sensitive data
- Ethical committee approval?
- Informed consent?

Copyright License

- How are we legally bound?
- How do we want to license our results?

Publishing

- Can we publish data?
- Is there any domain-specific repository?

Tools to help you with DMP

- Data Stewardship Wizard (or FAIR Wizard, e.g. CAS)
- DMP Online
- Argos

Data Reuse

Data Reusing Data Collection Data Archiving Data Lifecycle Data Processing Data Analysis

Benefits

- Resource efficiency (time, money, equipment)
- Access to hard-to get data
- Larger datasets

Perils

- Different collection methodologies
- Quality?
- Incompatible formats
- Ethical aspects

Solutions

- Implementation of FAIR principles
 - Community standards
 - Preferred formats
 - Unified ontologies/controlled vocabularies
 - Permissive licensing
- Data harmonization
 - Cleaning
 - Processing
 - Transformation
 - Normalization

Data Reuse

Data Reusing Data Collection Data Archiving Data Lifecycle Processing Data Analysis

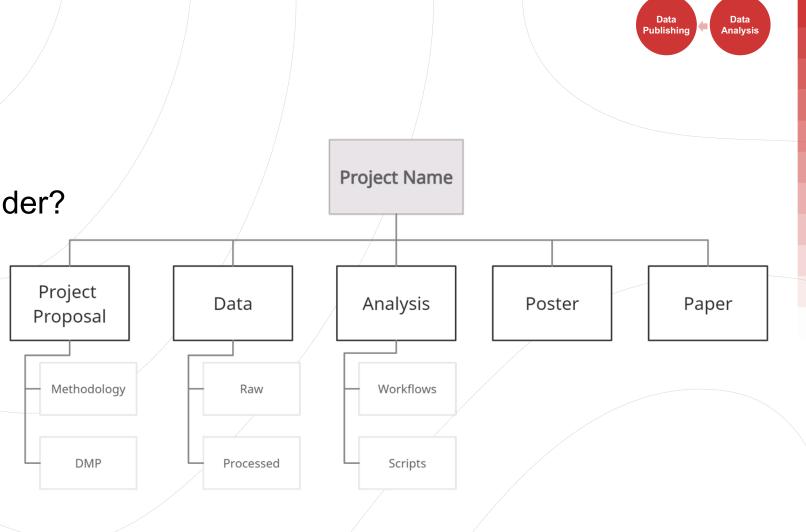
Good practice

- Use of persistent identifiers (DOI, IGSN)
- Use of ethically/legally indisputable
- Reusing established workflows
- Reusing data from other filed

Questionable practices

- Assuming data are correct
- Use without/in breach of license

Reference datasets


- Trusted data
- Peer-reviewed, validated
 (e.g. NIST Webbook of chemistry)

Non-reference datasets

- Experimental/observational data
- Variable quality

Organization

- Max 4 levels
- Max 10 subfolders to a folder?
- Documentation
 - ReadMe file
 - Codebooks
 - Guides
 - Manuals

Collection

Processing

Data Lifecycle

Project_YYYYMMDD_ContentDescription_Version.ext

- Team - Protocol used

Language

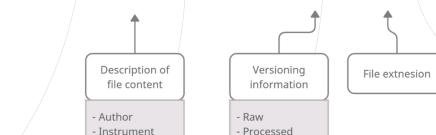
Organization File naming

Consistent

- No diacritics
- No special characters
- Use
 - hyphens (-) and underscores (_) for separation

Standardized

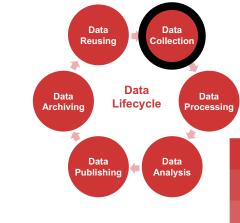
date format


abbreviations + codebook in ReadMe file

Project name

Project

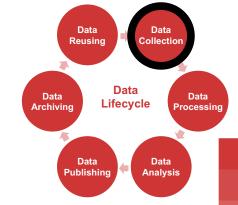
acronym


- Include
 - metadata (language, author, instrument, parameters ...)
 - transformation stage (raw, processed, analyzed ...)

- Denoised

- Stitched

Cleaned

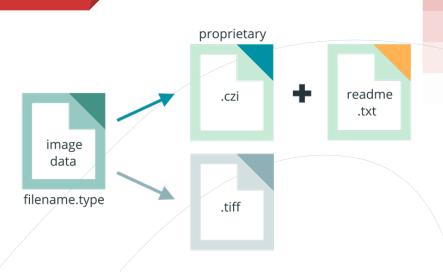


Organization

File naming

Metadata

- Not only for the whole dataset, but also for files
- Electronic Laboratory Notebook
 - Keeps provenance of sample and measurements
 - Keeps metadata structured
 - Helps to keep data FAIR and lowers the threshold for publication
 - Many options from Google Colaboratory up to all-in-one solutions (e.g. <u>LabFolder</u>)


Organization
File naming
Metadata

File formats

- Preferred vs. popular
- Open vs. proprietary
- If proprietary necessary, include info in ReadMe on how to open/use the file (SW, workflow etc.)
- E.g. TIFF (JPEG), PDF/A (DOCX), CSV (XLSX)

Preferred format

- archiving-friendly
- open
- well-documented
- human & machine readable
- lossless compression
- not dependent on a specific SW

Data Lifecycle

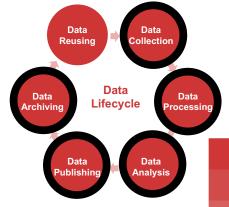
Processing

Data Analysis

Data Processing & Analysis

- Data Reusing

 Data Collection


 Data Archiving

 Data Lifecycle

 Data Processing

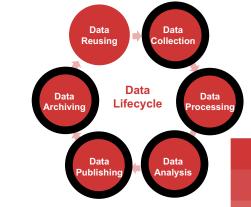
 Data Analysis
- Algorithmic workflows preferred (reproducibility, efficiency)
- Always work on a copy: original raw data need to stay untouched
- Minimize work with sensitive data
 (e.g. split sensitive/personal (meta)data and reconstitute them only
 using a key available to a small group of people)

Data Storage

By stage

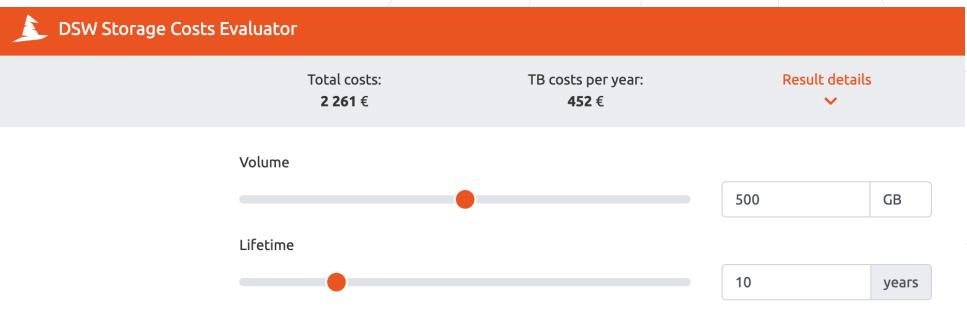
- During collection/processing/analysis (on-campus/off-campus)
- After analysis publishing (e.g. repository)
- After the project finishes archiving (locally, repository, or cold-storage?)

Security aspects


- Encryption
- Training
- Access restriction (by role, read/write etc.)

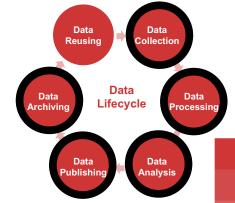
Financial aspect

Question 6: How much should your budget be if you need to store 1 TB of data for 10 years?


Assume that a <u>large number of small files</u> is going to be generated. And even though the data will only be archived at the storage facility, the researcher wants to be able to retrieve the whole dataset in one day. As a good custodian, the researcher requires 24/7 support and will tolerate only 1 day of downtime per year. Due to the sensitivity of the data, controlled access will be required

- A. 10 000 CZK
- B. 50 000 CZK
- C. 100 000 CZK
- D. 500 000 CZK
- E. 1 000 000 CZK
- F. 5 000 000 CZK
- G. 10 000 000 CZK

Data Storage – price estimation



Detailed storage properties 💙

Source: storage-costs-evaluator.ds-wizard.org/

Data Storage – price of AWS

Standard

First 50 TB/Month

Next 450 TB/Month

Over 500 TB/Month

 $$0.023 \text{ per GB} \rightarrow 13517\$ \text{ per year}$

 $$0.022 \text{ per GB} \rightarrow 121 651\$ \text{ per year}$

\$0.021 per GB → 129 024\$ per year

Archive

Archive Access Tier

100TB → 4 424\$ per year


All Storage/Month \$0.0036 per GB

Deep Archive Access Tier 100TB → 1217\$ per year All Storage/Month \$0.00099 per GB

Data Publishing

License

- Exclusive
- Non-exclusive
 - SW specific (GPL, MIT, Apache)
 - Creative commons (CC)
 - **0** Public domain
 - **BY** By Attribution
 - ND No Derivatives
 - **NC** Non-Commercial
 - SA Share Alike

Data

Data Processin

Data Publishing

Data Reusing Data Collection Data Archiving Data Lifecycle Data Processing Data Analysis

License

Repository selection

- Institutional/national/generic/field-specific
- Persistent identifiers (DOI, ORCiD, ROR...)
- Metadata generic (e.g. DataCite) or field specific? Funding/grant field?
- File size/number limitations
- File format compatibility
- Access control/embargo
- Licenses
- Reputation, persistence, sustainability?
- Price

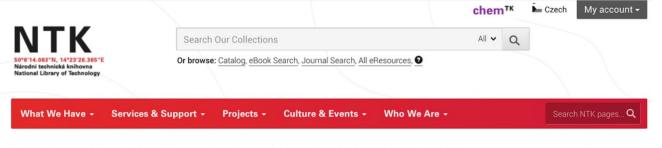
Where to look for?

- All-purpose aggregators (e.g. <u>re3data</u>, <u>FAIRsharing</u>)
- Societies and grant agencies (e.g. <u>NFDI4Chem</u>, <u>ERC</u>)

How to prepare a dataset and publish it?

Register for a brand-new workshop:

- 8 December 2025 (10:00 12:30)
- In-person at NTK
- Topics
 - Dataset preparation (organization, ReadMe file etc.)
 - Repository selection
 - Dataset deposition on Zenodo

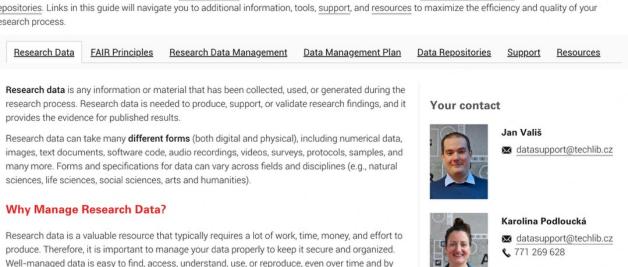

Where to learn more?

NTK

- RDM Guide
- Data Stewardship Course
 - 11 self-guided chapters
 - Finished by self examination
 & certificate

Self-study

- EOSC CZ webinars (all)
- NPOS Czech only (all)
- RDMkit (life-sciences)
- OpenAIRE (all)



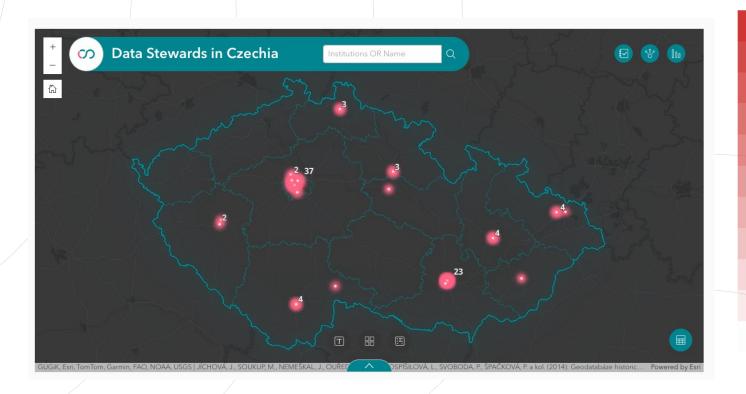
Homepage / Services & Support / Education and Research Support / Tutorials / Research Data Management

others. Research data management (RDM) can make your research process more efficient and it

Research Data Management

Research data management (RDM) can help you keep your data organized, well-documented, and secure so that you can easily find, understand, share, and reuse it at any time. This guide provides a brief introduction to research data, RDM practices (for efficient data organization, documentation, storing, sharing, and RDM planning), and commonly accepted FAIR Principles. It includes recommendations for creating a data management plan and sharing data using repositories. Links in this guide will navigate you to additional information, tools, support, and resources to maximize the efficiency and quality of your research process.

Where to get help?


Community

- Map
- Manuals
- Meetings
- Discord

Your institution

- Librarian
- Data Steward

NTK: free consultations

What to take home?

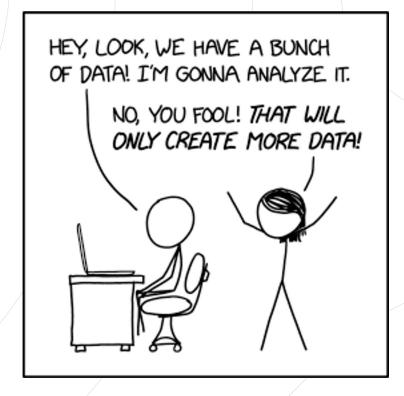
- Research data management:
 - is a helpful tool, not just an administrative task,
 - is a good scientific practice,
 - can save time and money and
 - # Open Science, but sharing can create impact.
- Communities define standards and they are usually open to others joining their efforts. The same is happening at the national level.
- There are already many online resources to learn from.
- Funding providers already demand and financially support OS and RDM practices, including DMP.

NTK Information Support Team

1) Schedule a free consultation with us

Don't be shy; our team includes doctoral candidates who understand the issues you face.

- 2) Attend another webinar
- 3) Explore on your own: <u>Tutorials</u>, <u>Al tools for research</u> or <u>STEMskiller</u>
- 4) Subscribe to our <u>newsletter</u> for updates on resources, writing support, publishing, research evaluation, and training opportunities.


Any questions? Contact us at info@techlib.cz

Contact

Jan Vališ (ian.valis@techlib.cz

Questions?

Source: https://xkcd.com/2582/;
Available via license: CC BY NC 2.5